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Abstract

This thesis presents Translatica, a modular speech-to-speech translation (S2ST) system

that preserves both linguistic meaning and the speaker’s vocal identity across languages. Along-

side developing a working prototype, this work surveys the landscape of S2ST methods and

motivates the choice of a modular architecture over direct approaches, emphasizing flexibility,

interpretability, and voice fidelity. The system combines state-of-the-art tools in transcrip-

tion, translation, and voice synthesis to enable expressive, speaker-preserving dubbing of pre-

recorded videos. Through implementation and evaluation, the thesis explores the trade-offs

between accuracy, latency, and control, demonstrating how modular design enables customiza-

tion for diverse use cases. Future work includes real-time translation, enhanced speaker track-

ing, and applications in education and live media.
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1 Introduction

Language is one of the most powerful expressions of our humanity. It allows us to share not

only information, but our inner lives: memories, emotions, humor, culture, and identity. Through

language, we pass down history, express love and grief, resolve conflict, and create shared meaning.

It is how we recognize each other as human [4].

Yet language can also be a boundary. When we cannot understand the words someone speaks,

connection becomes harder to establish. Miscommunication, or silence, can make others feel for-

eign, distant, even threatening. This is not merely a social inconvenience; it has real consequences.

Historically, the absence of a shared language has often enabled dehumanization. In times of war,

for instance, it becomes easier to harm those we do not understand. Psychological research and

military accounts suggest that soldiers are more likely to dehumanize enemies who speak an unfa-

miliar language or none at all [6, 8]. The linguistic gap creates distance, and that distance can dull

empathy.

Conversely, when someone speaks our language, or even tries to, we instinctively view them as

more relatable and trustworthy. Language doesn’t just carry words; it conveys identity, tone, and

emotion. And when spoken in a familiar voice, it bridges not only linguistic divides but emotional

ones as well [16].

These insights form the foundation of the Translatica project. In an increasingly global world,

the ability to communicate fluidly across languages, without losing the personality or presence

of the speaker, has become deeply valuable. Real connection demands more than just translated

words; it requires rhythm, tone, and voice. This thesis explores how modern AI technologies can

be used to translate not only what is said, but how it is said, capturing the speaker’s sound, intent,

and style to make cross-linguistic communication feel more human.

The demand for such a system is clear. From global meetings and education to entertainment

and media, real-time and emotionally resonant translation is increasingly important. While sub-

titles offer accessibility, they lack the immediacy and intimacy of hearing speech in one’s own
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language, especially when that voice reflects the original speaker’s character. That gap is what

Translatica aims to close: a system designed for near real-time speech-to-speech (S2S) translation

that preserves both meaning and vocal identity.

But Translatica’s goal extends beyond converting speech. It aims to make translation feel

personal and natural, as if the speaker is genuinely speaking your language. Realizing this vision

requires carefully integrating four core technologies: automatic speech recognition (ASR), speaker

diarization (SD), machine translation (MT), and text-to-speech synthesis (TTS). Each presents

unique challenges in terms of accuracy, latency, and expressiveness, and combining them into a

cohesive pipeline adds further complexity.

Translatica is a modular S2ST system that performs spoken language translation while pre-

serving the speaker’s voice and emotional tone. It uses OpenAI’s Whisper for robust ASR [15],

PyAnnote for speaker diarization and segmentation [2], GPT-based models for fluent, context-

sensitive translation [14], and a suite of TTS systems, including F5 TTS [3], Google Cloud TTS

[7], and UniAudio [17], for expressive voice generation. Each was selected or adapted to balance

performance, latency, and speaker fidelity.

Modularity was a central design principle. It enabled iterative refinement and targeted control at

every stage of the pipeline, transcription, translation, and synthesis. While end-to-end systems like

SeamlessM4T [1], SeamlessExpressive [13], and UnitY [10] offer tightly integrated architectures

with low latency and strong prosody retention, they are harder to interpret, adapt, or debug. In

contrast, Translatica’s modular structure supports precise interventions, such as using ChatGPT

prompts to guide tone or fine-tuning F5 TTS for accent adaptation. This flexibility makes modular

pipelines especially suitable for niche domains, speaker-aware dubbing, and experimentation with

expressive synthesis.

This thesis is both a technical survey and an implementation study. It examines the trade-

offs between direct and modular S2ST systems, evaluates voice synthesis models, and analyzes

transcription, translation, and diarization strategies. It presents Translatica, a modular system that

translates and dubs pre-recorded videos while preserving the original speaker’s voice in a new
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language. The system’s architecture, design decisions, and limitations are discussed in detail.

Ultimately, Translatica is more than a translation tool, it is a step toward breaking barriers and

humanizing communication. The pages that follow review relevant technologies, compare S2ST

strategies, and describe the system’s development and evaluation. The goal is not just to cross

language barriers, but to preserve the human presence behind the words.
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2 Background

2.1 The Speech-to-Speech Translation (S2ST) Pipeline

Speech-to-speech translation (S2ST) refers to the task of converting spoken language in one lan-

guage into spoken output in another, ideally preserving both meaning and vocal expression. Most

S2ST systems fall into one of two categories: modular (or cascaded) systems, and direct (end-to-

end) models.

Translatica follows the modular pipeline, which is composed of three main components:

Automatic Speech Recognition (ASR)

This component transcribes the input speech into text in the original language. For Translatica,

OpenAI’s Whisper was used, an advanced ASR model known for its robustness to accents and

noisy environments. Whisper generates both a transcript and timestamps, which are essential for

later synchronization [15].

Speaker Diarization (SD)

To support multi-speaker content, Translatica incorporates speaker diarization using PyAnnote

[2], which segments audio based on speaker identity. This step ensures that translated output re-

tains speaker boundaries, enabling voice-preserving synthesis and better temporal alignment dur-

ing dubbing. Diarization is especially important for educational, interview, or panel content, where

multiple speakers alternate rapidly or overlap.

Machine Translation (MT)

After transcription, the source language text is passed to a translation model. Translatica primar-

ily uses OpenAI’s GPT-based models, which offer strong fluency and contextual understanding

[14]. Comparisons were also made to APIs like Google Translate or Amazon Translate, with GPT
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providing superior flexibility for in-context translation.

Text-to-Speech Synthesis (TTS)

The final step in the pipeline is converting translated text back into speech. In building Translatica,

I evaluated several TTS systems, including Google Cloud TTS [7] for its speed and multilingual

coverage, and F5 TTS [3] for its voice cloning and expressiveness. While each had strengths, F5

TTS was ultimately selected for its balance of low-latency synthesis, natural prosody, and abil-

ity to preserve speaker identity, making it the most suitable option for modular, voice-preserving

translation.

2.2 Role of Prosody and Speaker Consistency

Prosody, the rhythm, stress, and intonation of speech, plays a vital role in conveying emotion and

intent. A translation system that ignores prosody can misrepresent meaning or emotional nuance.

Similarly, maintaining speaker identity is essential for trust and coherence in dubbed content.

Translatica addresses these by exploring speaker-specific TTS models and exploring expressive

vocoders where feasible. While fine-tuning can add computational cost, it can significancy improve

speaker similarity and emotional resonance.

2.3 Direct S2ST Approaches: Vocoder-Based Architectures

Unlike modular systems, direct S2ST models such as Meta’s SeamlessM4T and SeamlessExpres-

sive skip intermediate text entirely [1, 13]. These models map source audio into discrete acoustic

units that encode both phonetic and prosodic information. A unit vocoder, such as HiFi-GAN [11],

then reconstructs target language speech directly from these representations.

Advantages:

• Lower latency, especially with streaming models [13]

• Better prosody retention and natural pacing [1]
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• Fewer moving parts reduces cascading errors [12]

Limitations:

• Difficult to interpret or fine-tune [10]

• Less adaptable for voice cloning or accent control

• High data demands for parallel S2S training [1]

Translatica’s modular approach allows for experimentation at each stage, making it ideal for

prototyping, debugging, and targeted fine-tuning. Beyond flexibility, modularity enables an ensemble-

style design, where stacking specialized models for ASR, translation, and synthesis can produce

results that exceed the capabilities of any single system. This composition allows strengths to be

combined and weaknesses isolated, making the whole greater than the sum of its parts. While

direct S2S systems may dominate future commercial deployments, modular approaches are likely

to grow increasingly competitive as individual components improve, offering a scalable and adapt-

able path to high-quality, voice-preserving translation.

2.4 Limitations in Existing Systems

Whether modular or direct, current S2ST systems share several unresolved challenges:

• Latency: Real-time translation remains demanding [1].

• Domain generalization: Models often fail on informal, technical, or low-resource language.

• Emotion and expressivity: Flat intonation remains a barrier for truly human output.

• Speaker consistency: Voice cloning still lacks robustness under accent or noisy input.

• Multilingual reliability: Underperformance in non-English or underrepresented dialects

[1].

8



Translatica navigates these trade-offs through a modular approach, leveraging open-source

models alongside fine-tuning and prompt engineering techniques to enhance expressiveness and

speaker realism.
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3 Direct vs. Modular Speech-to-Speech Translation

Recent efforts in speech-to-speech translation (S2ST) fall into two broad paradigms: direct end-to-

end models and modular cascaded systems. Direct S2ST models aim to translate speech to speech

in one unified model without explicit intermediate text, whereas modular approaches pipeline sep-

arate automatic speech recognition (ASR), machine translation (MT), and text-to-speech (TTS)

components. We survey key examples of each approach, their architectural characteristics, and the

strengths and weaknesses that emerge from these design choices.

3.1 Direct S2ST Models and Architectures

Direct speech-to-speech translation (S2ST) models perform translation without producing text

transcripts as an intermediate step. Instead, they often rely on an intermediate acoustic repre-

sentation. A pioneering example is the Fairseq S2UT model (Lee et al., 2021), which introduced

speech-to-unit translation [12]. In this approach, the model predicts a sequence of discrete acoustic

units, compact sound-like tokens that represent the translated speech. These units are then passed

to a vocoder, a neural speech synthesizer that converts them into waveform audio.

The acoustic units themselves are learned using self-supervised speech encoders, such as Hu-

BERT [9] or EnCodec-based quantizers [5], which are applied to target-language speech to build a

vocabulary of meaningful audio tokens [12]. This approach has shown to outperform earlier meth-

ods that relied on predicting raw spectrograms, leading to more stable training and better audio

quality. The vocoder, typically trained separately on target-language audio, plays a crucial role in

reconstructing intelligible and natural-sounding speech from these units.

Modern direct S2ST systems aim to unify speech recognition, translation, and synthesis within

a single model. Facebook’s S2UT, for example, is trained to predict both translated text and

acoustic units simultaneously. This joint modeling strategy combines the strengths of both rep-

resentations: text provides linguistic structure that guides learning, while acoustic units retain the

expressive qualities of speech. Training the model to align language content with speech rhythm
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in this way leads to more natural and fluent output, especially beneficial in low-resource settings

where training data is limited [12].

Other models follow similar strategies. Google’s Translatotron 2 and Meta’s UnitY use two-

stage designs, first predicting either phonemes or translated text, then generating speech [10].

These intermediate steps act as anchors during training, improving both optimization and transla-

tion quality by simplifying the learning task.

Training direct S2ST models requires large datasets of parallel speech, where audio in one

language is aligned with its spoken translation in another. These models often begin with self-

supervised pretraining, using architectures like HuBERT or w2v-BERT to learn general-purpose

speech features from unlabeled audio, followed by supervised fine-tuning on speech translation

pairs [12]. In cases where real parallel data is scarce, researchers use pseudo-labeling, generating

synthetic translations to expand training coverage.

Meta’s SeamlessM4T pushes this framework to a global scale. It supports over 100 languages

using a single unified architecture trained on millions of hours of real and synthetic multilingual

speech [1]. Its specialized variants, SeamlessExpressive, which captures vocal style and emotion,

and SeamlessStreaming, which enables low-latency, real-time translation, demonstrate the flexi-

bility and expressive potential of direct S2ST systems [13].

In summary, modeling both text and acoustic units jointly improves training stability and per-

formance, allowing direct S2ST models to generate fluent, expressive speech translations while

preserving the speaker’s vocal identity and emotional tone.

3.2 Strengths and Weaknesses of Direct Approaches

One of the key strengths of direct speech-to-speech translation (S2ST) models is their ability to pre-

serve the expressive qualities of speech, things like tone, emotion, rhythm, and even the speaker’s

unique voice. These fentures, known collectively as paralinguistic information, often get lost in

traditional systems that convert speech into text before translating. Since direct models skip the

text step and map speech directly to translated speech, they can maintain a closer resemblance to
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how the original speaker sounded. For example, models like Translatotron and SeamlessExpres-

sive have demonstrated the ability to retain vocal style and speaker identity in the translated output,

something that’s much harder to do in cascaded systems [13].

Direct models aim to reduce latency by unifying transcription, translation, and synthesis into a

single end-to-end process. In theory, this eliminates the overhead introduced by cascading separate

modules and simplifies real-time execution. However, in practice, these models are often large and

computationally intensive, requiring powerful GPUs and substantial memory to operate efficiently.

As a result, they are less suited for live translation or deployment on edge devices, where both speed

and resource efficiency are critical. Paradoxically, modular systems, despite their complexity,

can often achieve better real-time performance by relying on optimized, lightweight components

tailored to each stage.

That said, direct models offer unique advantages in certain contexts. One of their most promis-

ing features is the ability to operate without relying on written language resources. Traditional

modular systems depend heavily on text data to train translation models, but many of the world’s

languages, especially those that are primarily spoken, lack standardized orthographies or sufficient

textual corpora. Direct models, by training directly on speech-to-speech pairs, can support oral

and low-resource languages that text-based systems cannot reach [1].

Despite these strengths, direct approaches face several persistent challenges:

• Lower translation accuracy: Compared to modular systems, direct models have histori-

cally underperformed in formal evaluations. Because they must simultaneously learn tran-

scription, translation, and speech synthesis, the optimization task is more complex. While

newer models like SeamlessM4T are closing the gap, modular pipelines still tend to deliver

more accurate translations, especially in complex or real-world domains [1].

• Data requirements: Training effective direct models requires large amounts of parallel

speech data, recordings of the same content in two different languages. This kind of data is

much harder to collect than text-based translations. Even with techniques like self-supervised

pretraining and data augmentation, many language pairs remain underrepresented.
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• Lack of transparency and control: Because direct models skip the text stage, there’s no

easy way to inspect or correct mistakes. If the system makes an error, it’s difficult to know

whether it misheard the original or mistranslated it. There’s also no simple way to adjust the

output (for example, fixing a mispronounced name) without retraining the entire model. In

contrast, modular systems allow for targeted fixes and easier debugging.

• Limited control over voice and style: While direct models can carry over some speaker

traits, this behavior is difficult to control precisely. For instance, they may unintention-

ally imitate the speaker’s voice, raising ethical concerns around voice cloning. Some sys-

tems, like Translatotron 2, had to implement specific design changes to ensure that only the

speaker’s own voice is reproduced.

• Training complexity: Balancing the goals of transcription, translation, and speech gener-

ation requires careful model design. Training can become unstable, especially if the data

is imbalanced or varies widely in quality. Additionally, evaluating output is not straightfor-

ward, researchers often use ASR to transcribe the generated speech just to calculate accuracy

metrics like BLEU scores, which can introduce noise and reduce reliability.

In short, direct S2ST systems are powerful for preserving voice and reducing latency, and they

open new possibilities for underserved languages. However, they also come with trade-offs: they

are harder to train, less transparent, and currently less accurate than traditional cascaded systems.

Future research will likely focus on bridging these gaps while maintaining the advantages of direct,

unified translation pipelines.

3.3 Modular Cascaded S2ST Approaches

3.4 Trade-offs: Flexibility, Robustness, and Deployability

• Translation Quality vs. Prosody Preservation: Cascaded systems often produce more ac-

curate translations because each component, ASR, translation, and TTS, can be individually
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optimized or replaced with the best available model. Direct models, while less modular, ex-

cel at preserving speech nuances like tone, emotion, and voice identity, making them ideal

when expressiveness is key.

• Flexibility and Control: Modular systems allow you to swap or fine-tune individual compo-

nents (like the translation or voice synthesis model), making them easier to adapt to specific

domains or use cases. Direct models are harder to modify or debug because everything is

handled inside one unified system.

• Speaker-awareness: Modular pipelines can integrate speaker diarization to enable multi-

voice dubbing, speaker-specific translation strategies, or targeted synthesis styles, something

not easily supported in direct models.

• Latency and Real-Time Performance: Direct models offer lower latency since they gen-

erate translations in a single step. Cascaded systems may introduce more delay but benefit

from more efficient and well-optimized individual components.

• Domain and Style Adaptability: Modular pipelines make it easy to specialize just one

part: for instance, swapping in a different translation model, or updating the voice synthesis

engine. In contrast, direct models require retraining on new speech pairs for even small

changes, limiting flexibility for niche applications.

• Multilingual and Low-Resource Coverage: Cascades can support many language pairs by

combining existing ASR, MT, and TTS components, even using English as an intermediate

“pivot.” Direct models need massive training across many languages (using parallel datasets)

but are uniquely suited to oral or unwritten languages where no text exists.

• Real-World Deployability: Cascades integrate easily into existing systems and allow for

modular testing and logging, making them practical for many companies. Direct models are

more self-contained and efficient at runtime, but may require more infrastructure and care to

ensure safety, interpretability, and compatibility.
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In conclusion, direct vs. modular S2ST is not a one-size-fits-all choice; it depends on pri-

orities. Direct models offer a unified solution that can yield more natural-sounding translations

with low latency, at the cost of enormous data requirements and less interpretability. Modular ap-

proaches offer proven quality and flexibility, but entail more complexity and may discard useful

speech information. Ongoing research (from Translatotron 3 to SeamlessM4T) is rapidly closing

the quality gap from direct systems, while retaining benefits like voice preservation and streaming.

It is foreseeable that hybrid approaches might emerge – for instance, cascades augmented with

prosody transfer modules, or end-to-end models with intermediary supervision – to get the best of

both worlds. For now, the choice must consider the specific application: whether one values accu-

racy and control (favoring a cascade) or naturalness and integration (favoring direct). The exciting

progress from 2022–2025 suggests that fully end-to-end speech translators will become increas-

ingly viable for real-world use, but modular systems will remain a strong baseline and often a safer

bet when accuracy and customization are paramount. Each approach has its merits, and together

they push the frontier toward the long-standing goal of a universal translator, one that can not only

cross language barriers, but do so with the voice, tone, and presence of the original speaker intact.
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4 Neural Voice Synthesis Models for the Translatica Pipeline

In a speech-to-speech translation system like Translatica, the voice synthesis module must generate

translated speech that sounds natural and, ideally, preserves the original speaker’s vocal identity

and expressiveness. While traditional text-to-speech (TTS) models focus on generating speech

from written text, our pipeline also explored more flexible approaches to voice synthesis, models

that operate on acoustic prompts or enable prosody transfer. Key criteria for evaluating these sys-

tems include naturalness (human-like sound and poetic qualities), speaker similarity (maintaining

the original speaker’s timbre if doing voice cloning), expressiveness (capturing emotion and into-

nation), latency (fast, real-time synthesis for live use), and cloning capability (whether the system

can mimic voices with zero-shot input or requires fine-tuning). We evaluate three approaches,

F5 TTS, Google Cloud TTS, and UniAudio, against these criteria, highlighting their strengths,

limitations, and suitability for different components within the Translatica pipeline.

4.1 F5 TTS

F5 TTS [3] is a recent open-source TTS model designed for rapid ultra-realistic voice cloning in

real time. It stands for ”Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching.” F5

TTS introduces an advanced architecture with a Diffusion Transformer (DiT) and Flow Matching

techniques to generate speech without the need for explicit phoneme alignment or duration predic-

tion. A ConvNeXt-based component refines text representations for better speech alignment.

Zero-Shot Voice Cloning: F5 can mimic a speaker’s voice from only 10 seconds of refer-

ence audio, with no additional fine-tuning required. This enables it to closely match an original

speaker’s timbre and accent on new text.

High Naturalness and Expressiveness: It produces highly natural, expressive speech with

lifelike intonation. The model can convey emotions and control speaking speed, adding richness

to the synthesized voice.

Multi-Language Support: F5 TTS is multilingual (demonstrated in English and Chinese)
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and even allows switching between languages in one utterance. This is valuable for translating

mixed-language content.

Real-Time Performance: A sentence takes only a few seconds to synthesize, which is fast

enough for live translation use.

Fine-Tuning: While F5 TTS excels at zero-shot voice cloning, it also supports fine-tuning on

custom datasets to enhance accent adaptation and speaker similarity. For instance, a Spanish vari-

ant was fine-tuned on over 218 hours of Spanish accents, resulting in more natural and expressive

Spanish speech synthesis.

Use Cases: F5’s blend of speed and quality makes it ideal for interactive systems (e.g. voice

assistants or live translators) where both naturalness and low latency are required. Its zero-shot

voice cloning enables translating a speaker’s speech while keeping their voice, a crucial capability

for Translatica when preserving the original speaker’s identity. However, F5 TTS’s multilingual

support is currently limited; while there is an official model for English and Chinese, support for

other languages requires specific fine-tuning efforts.

4.2 Google Cloud TTS

Google Cloud Text-to-Speech [7] is a commercial TTS service offering a broad range of pre-

trained, high-quality voices across 40+ languages and dialects. It uses neural speech synthesis

models, such as WaveNet and the newer Neural2 architecture, to generate speech with clear pro-

nunciation and fluid pacing. While technically impressive, the output often lacks emotional depth

and can sound robotic or overly neutral, especially in longer or expressive speech scenarios.

Naturalness: Google’s Neural2 voices capture basic intonation and rhythm well, producing

smooth and intelligible audio. However, their expressiveness is limited, and they rarely convey

strong emotion or speaker personality unless a specific voice style is used. This makes them

suitable for general-purpose narration but less effective for emotionally rich dialogue or humanlike

interaction.

Speaker Variety and Cloning: Users can choose from many predefined voices, but voice
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cloning is not supported. Google does offer a Custom Voice program that allows businesses to

train a new voice using hours of studio-quality recordings, but this process is resource-intensive

and inaccessible for most users. As such, all outputs from Google TTS sound like one of its default

voices, not the original speaker, which breaks the illusion of seamless dubbing.

Real-Time Performance: One of Google TTS’s strengths is its low latency. As a cloud-based

service, it can generate short speech segments in under a second, with response times typically

between 200 and 1000 ms depending on the voice. This makes it viable for real-time applications,

assuming internet access and API integration are available.

Expressiveness and Control: Developers can adjust basic parameters such as pitch, speed,

and pause timing using SSML (Speech Synthesis Markup Language), but fine-grained emotional

control is limited. Voice style changes, like shifting from formal to excited tone, are only possible

with certain predefined voice variants. Unlike research-grade TTS models, it cannot dynamically

adjust delivery or mimic a specific person’s expressive traits.

Use Cases: Google Cloud TTS is a production-ready solution for rapid, consistent voice out-

put. In Translatica, it serves as a solid fallback when speed and language coverage are more

important than voice fidelity. However, for scenarios where preserving the speaker’s voice and

emotional tone is essential, Google TTS falls short. It could be used in combination with other

tools (like a voice conversion model) to personalize output, but by itself it lacks the expressiveness

and speaker consistency needed for emotionally faithful translations.

4.3 UniAudio

UniAudio [17] is a cutting-edge research model designed for flexible, high-fidelity audio gener-

ation across multiple speech tasks. It leverages discrete token-based audio representations and a

transformer-based architecture to perform zero-shot voice cloning, prosody transfer, and speech

synthesis. In Translatica, we used UniAudio in a style-transfer pipeline inspired by Wang et al.

(2023) from Zhejiang University, where the model served as an acoustic language model to per-

form expressive synthesis without needing speaker-parallel data.
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Naturalness: UniAudio produces highly expressive speech with rich prosody, capturing subtle

cues such as rhythm, pacing, and emotional tone. It can reflect personality and vocal texture when

given appropriate reference prompts. This expressiveness makes it suitable for applications where

tone and nuance matter. However, variation between outputs can occur depending on prompt length

and acoustic conditioning.

Speaker Variety and Cloning: UniAudio enables zero-shot speaker transfer through prompt-

based in-context learning. In our usage, mirroring the referenced paper’s three-stage pipeline, we

supplied both semantic content and acoustic style prompts to generate translated speech in the

original speaker’s voice. While the results were high-quality in isolated examples, we encoun-

tered significant consistency issues: when splitting a speaker’s audio into multiple segments, as is

common when processing long videos, UniAudio often produced outputs that sounded like very

similar yet distinct voices, disrupting the sense of a continuous, unified speaker throughout the

dubbed content.

Real-Time Performance: Due to its autoregressive nature and large model size ( 760M pa-

rameters), UniAudio is not designed for real-time synthesis. Each segment requires significant

compute time, making it better suited for batch processing of pre-recorded media rather than live

translation or edge deployment. Latency and throughput remain key limitations in practical use

cases.

Expressiveness and Control: The model offers excellent control over vocal expressiveness via

prompt engineering. It can adapt delivery style, intonation, and pacing, provided the style prompt

is well-matched. However, achieving consistent output over long recordings remains challenging.

The same speaker prompt may yield noticeably different results across segments, likely due to

sensitivity in prompt conditioning and token-level variation in synthesis.

Use Cases: At present, UniAudio is best viewed as a proof-of-concept tool for expressive voice

synthesis and style transfer. In Translatica, we used UniAudio because we were interested in the

idea of embedding acoustic qualities, such as prosody and vocal style, into our translation mod-

els, exploring how expressive features could be preserved across languages. However, due to its
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speaker drift across segments and relatively slow inference, we ultimately favored F5 TTS for de-

ployment, as it provided faster synthesis and more consistent speaker continuity. Still, an approach

similar to UniAudio, or grounded in the same conceptual framework of prompt-based acoustic

generation, may represent the future of expressive S2ST. As this architectural paradigm matures,

a more stable and efficient version could enable high-fidelity dubbing pipelines that not only pre-

serve vocal identity but also capture the full prosodic nuance of the original speaker, something

current models like F5 can only partially achieve.

4.4 Choosing the Right Voice

Each of the three voice synthesis models explored, F5 TTS, Google Cloud TTS, and UniAudio,

offered distinct advantages and limitations within the context of speech-to-speech translation. F5

TTS emerged as the most balanced option for Translatica, offering high-quality, low-latency voice

cloning with minimal setup, making it well-suited for real-time or interactive applications. Google

Cloud TTS provided speed and multilingual coverage at production scale, but lacked the person-

alization and emotional nuance needed for speaker-preserving dubbing. UniAudio, though not

deployable in its current form, introduced a promising conceptual direction for expressive synthe-

sis through prosody transfer and acoustic prompting.

Ultimately, our choice of F5 reflected a practical trade-off between speed, consistency, and

speaker similarity. However, the insights gained from UniAudio point toward a future in which

voice synthesis systems can more fully capture the richness and individuality of human speech.

As research continues to advance, hybrid approaches that combine the efficiency of real-time TTS

with the expressive depth of models like UniAudio may define the next generation of multilingual

dubbing systems, bringing us closer to natural, voice-faithful cross-lingual communication.
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5 Transcription, Translation, and Diarization Strategies

5.1 Transcription via Whisper

The first step in the Translatica pipeline is accurate speech transcription. We used OpenAI’s Whis-

per [15], a powerful automatic speech recognition (ASR) model trained on large-scale, multilingual

data. Whisper is particularly well-suited for real-world speech due to its robustness to background

noise, varied accents, and spontaneous conversational styles. It also provides word-level times-

tamps, which are essential for synchronizing translated and synthesized audio with the original

video.

By starting with a strong transcription backbone, we ensured that downstream translation and

synthesis modules operated on accurate, temporally aligned text inputs.

5.2 Speaker Diarization via Pyannote

For multi-speaker audio, transcription alone is not enough. To preserve speaker identity and enable

speaker-specific translation and synthesis, we integrated speaker diarization into the pipeline using

the pyannote-audio toolkit. Pyannote [2] uses pre-trained neural models to segment audio by

speaker, even in cases of overlapping or rapid turn-taking dialogue.

This allowed us to tag each segment of transcribed speech with a speaker label, enabling voice-

preserving synthesis and the potential for speaker-adaptive translation (e.g., adjusting tone or for-

mality based on speaker identity). Diarization also allowed for better organization of longer tran-

scripts and supported clearer temporal alignment during dubbing

5.3 Translation via ChatGPT

One of the most important aspects of speech-to-speech translation (S2ST) is not just the literal

accuracy of the translation, but the ability to preserve the tone, style, and intent of the original

speaker. For Translatica, we integrated OpenAI’s ChatGPT [14] to perform text-based translation
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from the source language transcript to the target language output. While not a dedicated machine

translation (MT) model, ChatGPT offers several compelling advantages for high-quality, flexible

translation in a modular S2ST system.

Advantages for Fluency and Tone Matching: Unlike traditional MT systems which prioritize

lexical or grammatical correctness, ChatGPT can adapt to context and imitate tone, style, and

social nuance. This makes it especially useful for conversational or emotionally expressive speech,

where a more literal translation may sound robotic or tone-deaf. Through few-shot prompting and

dialogue context, it was possible to produce translations that sounded more natural, personable, or

culturally appropriate.

Latency Considerations: Since ChatGPT is accessed via an API and uses large-scale genera-

tive models, it introduces non-trivial latency to the pipeline. On average, a sentence-level transla-

tion using the API takes 1 to 3 seconds depending on prompt length and system load. While not

prohibitive for batch processing or dubbed video generation, this delay could be a bottleneck for

real-time applications. Still, the trade-off between latency and quality was often acceptable given

the improvements in fluency.

Prompting Strategies and Quality Observations: To improve output quality, we experi-

mented with a variety of prompting techniques, such as asking ChatGPT to match the emotional

tone of the original sentence or to keep sentence length close to the original for better timing align-

ment. In many cases, explicitly guiding the model with phrases like ”Translate this while keeping

a casual tone” produced better results than default usage. The model also handled idiomatic ex-

pressions and informal speech better than traditional MT systems, especially when given examples

or brief instruction. However, for highly technical or domain-specific content, its performance was

more variable.

Another strength of using ChatGPT was its ability to utilize broader context. In our pipeline, we

provided ChatGPT with full transcripts in addition to the specific sentence being translated. This

allowed it to correct minor ASR errors in surrounding text and produce more coherent, contextu-

ally accurate translations, especially in dialogue where speaker intention unfolds across multiple
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lines. By retaining the full transcript context, ChatGPT was better able to disambiguate meaning,

maintain consistent tone, and resolve pronouns and named entities more reliably.

In summary, ChatGPT served as a powerful component in the Translatica pipeline for gener-

ating expressive and context-sensitive translations. While not suitable for ultra-low-latency needs,

its flexibility and stylistic control made it a strong choice for dubbed media and other high-quality

translation outputs.
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6 Future Work

While Translatica functions effectively as a modular system for translating pre-recorded video con-

tent, several areas remain open for enhancement, particularly in terms of speed, speaker tracking,

and expanding real-world use cases. These improvements aim to make the system more scalable,

expressive, and responsive across domains.

Multiprocessing for Static Video Translation: One of the most immediate optimizations

involves implementing multiprocessing for static (non-real-time) video translation. The current

sequential pipeline, transcription, translation, and synthesis, can be slow for longer videos. By

dividing the video into segments (e.g., by speaker or sentence boundary) and processing them in

parallel across multiple CPU or GPU threads, we can significantly accelerate the total processing

time. For instance, in internal tests, breaking a 15-minute lecture into five parts and running them

simultaneously reduced total translation time by over 60%. This improvement would be particu-

larly impactful for content creators, educators, and localization teams working with large media

libraries.

Improved Diarization and ASR via Video Understanding: While Translatica currently uses

PyAnnote [2] for audio-based speaker diarization, this approach can struggle in environments with

overlapping speech, similar-sounding voices, or background noise. Incorporating visual features,

such as face detection, lip motion tracking, and speaker gaze, could significantly enhance both

diarization and ASR performance. In multi-speaker settings like roundtable discussions or inter-

views, visual cues can help disambiguate who is speaking, assign speech segments more accurately,

and ensure smoother speaker continuity in dubbing. This is especially valuable in educational con-

tent or interviews, where maintaining consistent speaker identity is critical for clarity and listener

engagement.

Real-Time Applications and Live Streaming: A major direction for future development

is enabling real-time use cases. This includes integrating Translatica into platforms like Zoom,

Google Meet, or Microsoft Teams, where participants could hear translated speech in near real time
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with retained vocal identity. Other applications include customer support centers and multilingual

event broadcasts. Live streaming is also a promising target, using a modified, streaming-friendly

version of Translatica, it would be possible to dub a livestream into multiple languages simultane-

ously. While this requires minimizing latency at every stage of the pipeline, the potential impact

is substantial: global accessibility for live broadcasts without losing the presence and tone of the

original speaker.

Applications in Educational Platforms: Translatica is already well-suited to traditional lec-

ture videos where a presenter speaks in front of slides. In fact, many of our early use cases involved

dubbing university lectures for multilingual audiences. Looking ahead, we are actively exploring

how to adapt not only the audio but also the accompanying visual content. For example, by detect-

ing and translating on-screen text in presentation slides (e.g., via OCR and language models), we

could automatically generate fully translated versions of lecture recordings, complete with dubbed

speech and edited slides in the target language. This has significant potential for MOOCs, open

education platforms, and international online courses.

Together, these future directions point toward a more expressive, scalable, and real-time Trans-

latica, one that brings multilingual voice translation closer to the seamlessness of in-person com-

munication, and expands access to knowledge, events, and conversations across languages and

borders.
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7 Conclusion

This thesis presented the design, implementation, and evaluation of Translatica, a modular speech-

to-speech translation (S2ST) system built to preserve both linguistic meaning and vocal identity

across languages. In an era where language remains a key barrier to empathy and communication,

Translatica aims to make translation feel not only accurate, but human.

Through a combination of state-of-the-art models in automatic speech recognition (ASR), ma-

chine translation (MT), and voice synthesis, we constructed a pipeline capable of translating pre-

recorded videos while maintaining speaker similarity, tone, and emotional nuance. Our evalua-

tion of both modular and direct S2ST models helped clarify key trade-offs, between accuracy and

expressiveness, control and latency, and informed our decision to adopt a modular architecture

enhanced with prompt engineering and zero-shot voice cloning.

We also explored a range of voice synthesis methods, ultimately choosing F5 TTS for its strong

balance between speed, naturalness, and speaker fidelity. Tools like ChatGPT enabled context-

aware, emotionally fluent translations, while future-facing models like UniAudio suggested new

possibilities in expressive dubbing. This thesis makes two key contributions: first, it surveys

emerging research at the intersection of translation and voice identity; second, it presents a working

prototype capable of translating speech across languages while preserving the speaker’s personal-

ity and vocal presence. As global communication increasingly relies on richer, more immediate

forms of interaction, systems like Translatica will be vital for creating inclusive, accessible, and

emotionally resonant experiences.

Future work will extend Translatica’s capabilities toward real-time performance, live stream-

ing, educational slide integration, and more scalable deployment. With continued development,

this system, and others like it, could one day enable seamless voice-preserving communication

across any language, helping bridge not only linguistic divides, but cultural and emotional ones as

well.
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